CONTEÚDO PROGRAMÁTICO

BIOLOGIA

1. Interação entre os seres vivos

- 1.1. Aspectos conceituais: população, comunidade, ecossistema, hábitat e nicho ecológico.
- 1.2. Cadeia, teia alimentar e níveis tróficos.
 - 1.2.1. Fluxo energético nos ecossistemas.
- 1.3. Pirâmides ecológicas.
- 1.4. Ciclos biogeoquímicos: água, carbono, oxigênio e nitrogênio.
- 1.5. Dinâmica das comunidades: sucessão ecológica.
- 1.6. Interações entre populações de uma comunidade.
 - 1.6.1. Características das populações: densidade, potencial biótico e resistência ambiental.
 - 1.6.2. Fatores reguladores do tamanho da população.
- 1.7. Alterações bióticas: extinção de espécies; introdução de espécies; fragmentação de hábitat.
 - 1.7.1. Poluição da água e medidas que minimizam os efeitos da interferência humana.
 - 1.7.2. Poluição do ar e medidas que minimizam os efeitos da interferência humana.
 - 1.7.3. Alterações nos ecossistemas: erosão e desmatamento; concentração de poluentes ao longo de cadeias alimentares; uso intensivo de fertilizantes; uso excessivo de inseticidas.
- 1.8. Ecossistemas terrestres (principais biomas) e ecossistemas aquáticos.

2. Qualidade de vida das populações humanas

- 2.1. Saúde, higiene e saneamento básico.
 - 2.1.1. Aspectos conceituais: endemias, pandemias e epidemias.
 - 2.1.2. Vacina e soro terapêutico.
- 2.2. Doenças infecto-contagiosas, parasitárias, carenciais, sexualmente transmissíveis (DST) e provocadas por toxinas ambientais.
 - 2.2.1. Principais doenças causadas por vírus, bactérias, fungos e protozoários (patogenias, agentes etiológicos, formas de transmissão e profilaxias).
 - 2.2.2. Principais doenças causadas por helmintos (platelmintos e nematódeos): teníase, cisticercose, esquistossomose, ascaridíase, ancilostomíase, filariose, bicho geográfico. Os ciclos de vida dos helmintos, formas de transmissão e suas profilaxias.
- 2.3. Gravidez, parto e métodos anticoncepcionais.

3. Identidade dos seres vivos

- 3.1. A química dos seres vivos.
 - 3.1.1. Água, sais minerais, vitaminas, carboidratos, proteínas, enzimas, lipídios e ácidos nucleicos encontrados nos seres vivos.
- 3.2. Organização celular dos seres vivos.
 - 3.2.1. Principais diferenças entre as células: procariota, eucariota vegetal e eucariota animal.
 - 3.2.2. Envoltórios celulares (parede celular e membrana plasmática).
 - 3.2.3. Processos de troca entre a célula e o meio externo: difusão, difusão facilitada, osmose, transporte ativo, fagocitose, pinocitose.
- 3.3. Metabolismo energético.
 - 3.3.1. Fotossíntese, quimiossíntese, respiração celular e fermentação.
- 3.4. Organelas celulares.
 - 3.4.1. O papel de cada organela e suas interações. Reconhecimento das organelas em figuras.
- 3.5. Núcleo e divisões celulares.
 - 3.5.1. Características gerais do núcleo interfásico e da célula em divisão.
 - 3.5.2. Ciclo celular; mitose e meiose; gráficos representativos.
 - 3.5.3. Gametogênese.
 - 3.5.4. Reprodução assexuada e sexuada.
- 3.6. DNA e tecnologias.
 - 3.6.1. Localização do DNA e do RNA e a importância dessas moléculas na célula.
 - 3.6.2. O modelo da dupla-hélice, replicação do DNA e transcrição.
 - 3.6.3. Código genético e síntese proteica.
 - 3.6.4. Ativação gênica e diferenciação celular.

- 3.6.5. Mutações gênicas, numéricas e estruturais.
- 3.6.6. Biotecnologia: DNA recombinante, organismos transgênicos, clonagem, terapia gênica, teste de DNA na identificação de pessoas, descoberta de genomas, aconselhamento genético, uso de células-tronco, benefícios e perigos da manipulação genética.

4. Diversidade dos seres vivos

- 4.1. Os princípios de classificação e regras de nomenclatura de Lineu; categorias taxonômicas; cladogramas.
 - 4.1.1. Características gerais dos integrantes pertencentes aos Domínios: Archaea, Bacteria e Eukarya.
 - 4.1.2. Características gerais e adaptações dos integrantes pertencentes aos Reinos: monera, protista, fungi, plantae e animalia.
- 4.2. Vírus: características gerais, reprodução e importância.
- 4.3. Fungos, protozoários e algas: mecanismos de sobrevivência, papel ecológico e interferência na saúde humana.
- 4.4. A Biologia das plantas.
 - 4.4.1. Origem das plantas e cladograma com seus quatro principais grupos.
 - 4.4.2. Caracterização geral e comparação dos ciclos de vida dos grupos de plantas: briófitas, pteridófitas, gimnospermas e angiospermas.
 - 4.4.3. Principais tecidos vegetais e morfologia dos órgãos vegetais.
 - 4.4.4. Dispersão de frutos e sementes.
 - 4.4.5. Fisiologia vegetal: transpiração; fotossíntese (fatores que influenciam a fotossíntese e PCF); absorção pela raiz; condução de seivas; principais hormônios; fototropismo e geotropismo; fitocromo e suas ações.
- 4.5. A Biologia dos animais.
 - 4.5.1. Noções básicas de embriologia (vitelo, etapas do desenvolvimento embrionário, folhetos embrionários e anexos embrionários, formação de gêmeos).
 - 4.5.2. Principais filos animais: características gerais; comparação da organização corporal entre os diversos grupos; local onde vivem; diversidade nos filos; importância ecológica e econômica.
 - 4.5.3. Craniados e vertebrados: características gerais; adaptações morfológicas e fisiológicas.
 - 4.5.4. Comparação entre os vertebrados quanto à reprodução, embriologia, revestimento, sustentação, digestão, respiração, circulação, excreção, sistema nervoso e endócrino.
 - 4.5.5. Fisiologia e anatomia dos sistemas do organismo humano: digestório, cardiovascular, respiratório, urinário, nervoso, endócrino, muscular, esquelético, sensorial, imunitário e genital.

5. Transmissão da vida e manipulação gênica

- 5.1. As concepções de hereditariedade.
 - 5.1.1. Concepções pré-mendelianas sobre a hereditariedade.
 - 5.1.2. Mendelismo: 1ª e 2ª leis.
 - 5.1.3. Meiose e sua relação com os princípios mendelianos.
 - 5.1.4. Probabilidade aplicada na genética; heredogramas (ou genealogias).
 - 5.1.5. Ausência de dominância, alelos letais e alelos múltiplos.
 - 5.1.6. Herança dos grupos sanguíneos (sistemas: ABO, MN e Rh).
 - 5.1.7. Interação gênica e herança quantitativa.
- 5.2. Genes ligados e permutação.
 - 5.2.1. Mapas cromossômicos e genoma humano.
- 5.3. A determinação do sexo e citogenética humana.
 - 5.3.1. Sistemas: XY, X0 e ZW.
 - 5.3.2. Heranças relacionadas com o sexo.

6. Origem e evolução da vida

- 6.1. A origem dos seres vivos.
 - 6.1.1. Hipóteses sobre a origem da vida e hipóteses sobre a evolução do metabolismo energético.
- 6.2. Evolução biológica.
 - 6.2.1. Ideias evolucionistas de J. B. Lamarck, C. Darwin, A. R. Wallace.
 - 6.2.2. Teoria sintética da evolução.
 - 6.2.3. Evidências da evolução.
 - 6.2.4. Genética de populações.
- 6.3. Especiação.
 - 6.3.1. Mecanismos de isolamento reprodutivo.
- 6.4. A origem dos hominídeos a partir da análise de árvores filogenéticas.

QUÍMICA

1. Materiais: uso e propriedades

- 1.1. Origem e ocorrência de materiais.
- 1.2. Propriedades gerais e específicas dos materiais.
- 1.3. Relação entre uso e propriedades dos materiais.
- 1.4. Estados físicos da matéria e mudanças de estado.
- 1.5. Misturas: tipos e métodos de separação.
- 1.6. Substâncias químicas: conceito e classificação.

2. Transformações químicas

- 2.1. Evidências de transformações químicas: alteração de cor, desprendimento de gás, formação / desaparecimento de sólidos, absorção / liberação de energia.
- 2.2. Interpretação das transformações químicas.
 - 2.2.1. Evolução do modelo atômico: do modelo corpuscular de Dalton ao modelo de Rutherford-Bohr.
 - 2.2.2. Modelos atômicos e a explicação de alguns fenômenos observáveis.
 - 2.2.3. Átomos e sua estrutura.
 - 2.2.4. Número atômico, número de massa, isótopos, massa atômica.
 - 2.2.5. Elementos químicos e Classificação Periódica: história, organização, representação e propriedades periódicas.
- 2.3. Representação de substâncias e de transformações químicas.
 - 2.3.1. Fórmulas químicas: fórmula mínima, fórmula centesimal, fórmula molecular.
 - 2.3.2. Equações químicas e balanceamento.
- 2.4. Aspectos quantitativos das transformações químicas.
 - 2.4.1. Lei de Lavoisier e Lei de Proust.
 - 2.4.2. Cálculos estequiométricos: massa, volume, quantidade de matéria (mol), massa molar.

3. Gases

- 3.1. Teoria cinética dos gases: modelo do gás ideal.
- 3.2. Propriedades físicas, Leis dos gases e Equação de Estado dos Gases ideais.
- 3.3. Princípio de Avogadro, volume molar dos gases.
- 3.4. Atmosfera terrestre: composição, características e poluição.

4. Substâncias metálicas

- 4.1. Metais: características gerais.
- 4.2. Ligas metálicas.
- 4.3. Ligação metálica.
- 4.4. Estudo de alguns metais (ocorrência, obtenção, propriedades e aplicação): alumínio, chumbo, cobre, cromo, estanho, ferro, magnésio, manganês, níquel e zinco.
 - 4.4.1. Implicações ambientais da produção e da utilização dessas substâncias.

5. Substâncias iônicas

- 5.1. Compostos iônicos: características gerais.
- 5.2. Ligação iônica.
- 5.3. Estudo das principais substâncias iônicas dos grupos (ocorrência, obtenção, propriedades e aplicação): cloreto, carbonato, nitrato, fosfato e sulfato.
 - 5.3.1. Implicações ambientais da produção e da utilização dessas substâncias.

6. Substâncias moleculares

- 6.1. Compostos moleculares: características gerais.
- 6.2. Ligações covalentes.
- 6.3. Polaridade das ligações.
- 6.4. Interações intermoleculares.
- 6.5. Estudo de algumas substâncias moleculares (ocorrência, obtenção, propriedades, aplicação): H₂, O₂, N₂, Cl₂, NH₃, H₂O₂, CO₂, HCl, CH₄.
 - 6.5.1. Implicações ambientais da produção e da utilização dessas substâncias.

7. Água e soluções aquosas

7.1. Ligação, estrutura, propriedades físicas e químicas da água; ocorrência e importância na vida animal e vegetal.

- 7.2. Interações da água com outras substâncias.
 - 7.2.1. Soluções aquosas: conceito e classificação.
 - 7.2.2. Solubilidade e concentrações (porcentagem, ppm, ppb, fração em mol, g/L, mol/L, mol/kg, conversões de unidades).
 - 7.2.3. Propriedades coligativas: conceito, aspectos qualitativos e quantitativos.
 - 7.2.4. Dispersões coloidais: tipos, propriedades e aplicações.
- 7.3. Poluição e tratamento da água.

8. Ácidos, bases, sais e óxidos

- 8.1. Principais propriedades dos ácidos e bases: interação com indicadores, condutibilidade elétrica, reação com metais, reação de neutralização.
- 8.2. Estudo de alguns ácidos e bases (obtenção, propriedades e aplicação): ácido acético, ácido clorídrico, ácido sulfúrico, ácido nítrico, ácido fosfórico, hidróxido de sódio, hidróxido de cálcio, solução aguosa de amônia.
- 8.3. Sais: conceito, propriedades e classificação.
- 8.4. Óxidos: conceito, propriedades e classificação.

9. Transformações químicas: um processo dinâmico

- 9.1. Cinética química.
 - 9.1.1. Rapidez de reações e teoria das colisões efetivas.
 - 9.1.2. Energia de ativação.
 - 9.1.3. Fatores que alteram a rapidez das reações: superfície de contato, concentração, pressão, temperatura e catalisador.
- 9.2. Equilíbrio químico.
 - 9.2.1. Caracterização dos sistemas em equilíbrio químico.
 - 9.2.2. Equilíbrio em sistemas homogêneos e heterogêneos.
 - 9.2.3. Constantes de equilíbrio.
 - 9.2.4. Fatores que alteram o sistema em equilíbrio: princípio de Le Châtelier.
 - 9.2.5. Produto iônico da água, equilíbrio ácido-base e pH, indicadores.
 - 9.2.6. Hidrólise de sais.
- 9.3. Aplicação da cinética química e do equilíbrio químico no cotidiano.

10. Transformações de substâncias químicas e energia

- 10.1. Transformações químicas e energia térmica.
 - 10.1.1. Calor de reação: reação exotérmica e endotérmica.
 - 10.1.2. Medida do calor de transformações por aquecimento de água.
 - 10.1.3. Conceito de entalpia.
 - 10.1.4. Equações termoquímicas.
 - 10.1.5. Lei de Hess.
- 10.2. Energia nas mudanças de estado.
- 10.3. Entalpia de ligação.
- 10.4. Transformações químicas e energia elétrica.
 - 10.4.1. Reações de oxirredução e números de oxidação.
 - 10.4.2. Potenciais-padrão de redução.
 - 10.4.3. Transformação química e produção de energia elétrica: pilha.
 - 10.4.4. Transformação química e consumo de energia elétrica: eletrólise.
 - 10.4.5. Leis de Faraday.
- 10.5. Transformações nucleares.
 - 10.5.1. Conceitos fundamentais da radioatividade: tipos de emissões e suas características.
 - 10.5.2. Reações nucleares: fissão e fusão nucleares.
 - 10.5.3. Desintegração radioativa: meia-vida, datação e uso de radioisótopos.
 - 10.5.4. Usos da energia nuclear e implicações ambientais.

11. Estudo dos compostos de carbono

- 11.1. As características gerais dos compostos orgânicos.
 - 11.1.1. Elementos químicos constituintes, fórmulas moleculares, estruturais e de Lewis, cadeias carbônicas, ligações e isomeria.
 - 11.1.2. Principais funções orgânicas: radicais funcionais.
 - 11.1.3. Reconhecimento de hidrocarbonetos, compostos halogenados, alcoóis, fenóis, éteres, ésteres, aldeídos, cetonas, ácidos carboxílicos, aminas e amidas.
 - 11.1.4. Propriedades físicas dos compostos orgânicos.
- 11.2. Hidrocarbonetos.
 - 11.2.1. Classificação.
 - 11.2.2. Estudo do metano, etileno, acetileno, tolueno e benzeno.
 - 11.2.3. Carvão, petróleo e gás natural: origem, ocorrência e composição; destilação; combustão; implicações ambientais.
- 11.3. Compostos orgânicos oxigenados.
 - 11.3.1. Estudo do álcool metílico e etílico, éter dietílico, formaldeído, acetona, ácido acético, ácido cítrico, fenol.
 - 11.3.2. Fermentação.
 - 11.3.3. Destilação da madeira.
- 11.4. Compostos orgânicos nitrogenados.
 - 11.4.1. Estudo de anilina, ureia, aminoácidos.
- 11.5. Macromoléculas naturais e sintéticas.
 - 11.5.1. Noção de polímeros.
 - 11.5.2. Glicídios: amido, glicogênio, celulose.
 - 11.5.3. Borracha natural e sintética.
 - 11.5.4. Polietileno, poliestireno, PET, PVC, teflon, náilon.
 - 11.5.5. Glicerídeos: óleos e gorduras, sabões e detergentes sintéticos.
 - 11.5.6. Proteínas e enzimas.
- 11.6. Principais tipos de reações orgânicas: substituição, adição, eliminação, oxidação / redução, esterificação e hidrólise ácida e básica.

FÍSICA

1. Fundamentos da Física

- 1.1. Grandezas físicas e suas medidas.
 - 1.1.1. Grandezas fundamentais e derivadas.
 - 1.1.2. Sistemas de unidade. Sistema Internacional (SI).
- 1.2. Relações matemáticas entre grandezas.
 - 1.2.1. Grandezas direta e inversamente proporcionais.
 - 1.2.2. A representação gráfica de uma relação funcional entre duas grandezas. Interpretação do significado da inclinação da tangente à curva e da área sob a curva representativa.
 - 1.2.3. Grandezas vetoriais e escalares. Adição, subtração e decomposição de vetores. Multiplicação de um vetor por um número real.

2. Mecânica

- 2.1. Cinemática.
 - 2.1.1. Velocidade escalar média e instantânea.
 - 2.1.2. Aceleração escalar média e instantânea.
 - 2.1.3. Representação gráfica, em função do tempo, do espaço, da velocidade escalar e da aceleração escalar de um corpo.
 - 2.1.4. Velocidade vetorial instantânea e média de um corpo.
 - 2.1.5. Composição de movimentos.
 - 2.1.6. Aceleração vetorial de um corpo e suas componentes tangencial e centrípeta.
 - 2.1.7. Movimentos uniformes e uniformemente variados; suas equações.
 - 2.1.8. Movimento circular uniforme, sua velocidade angular, período, frequência, sua aceleração centrípeta e correspondente relação com a velocidade e o raio da trajetória. Acoplamento de polias.
 - 2.1.9. Movimento harmônico simples (MHS), sua velocidade e aceleração, relação entre a posição e aceleração. Suas equações horárias.

2.2. Balística.

- 2.2.1. Queda livre.
- 2.2.2. Lançamentos vertical, horizontal e oblíquo (sem resistência do ar).
- 2.2.3. Equações do movimento de um projétil a partir de seus movimentos horizontal e vertical.
- 2.3. Movimento e as Leis de Newton.
 - 2.3.1. Forças e composição vetorial das forças que atuam sobre um corpo.
 - 2.3.2. Conceito de resultante de forças e sua obtenção por adição vetorial.
 - 2.3.3. Princípio da Inércia (1ª Lei de Newton). Referencial inercial.
 - 2.3.4. Massa e peso: diferenças entre essas grandezas, instrumentos de medição de cada uma.
 - 2.3.5. Princípio Fundamental da Dinâmica (2ª Lei de Newton). Sua aplicação em movimentos retilíneos e curvilíneos. Massa inercial.
 - 2.3.6. Princípio da Ação e Reação (3ª Lei de Newton).
 - 2.3.7. Momento ou torque de uma força. Condições de equilíbrio de um ponto material e de um corpo extenso.
 - 2.3.8. Força de Atrito. Diferenças entre o atrito cinético e o estático. Suas equações e representação gráfica da força de atrito.
- 2.4. Gravitação.
 - 2.4.1. Sistemas geocêntrico e heliocêntrico. Evolução histórica do modelo de universo. O sistema solar.
 - 2.4.2. Leis de Kepler.
 - 2.4.3. Lei da gravitação universal de Newton.
 - 2.4.4. O campo gravitacional.
 - 2.4.5. Órbitas. Órbita circular.
 - 2.4.6. Satélites artificiais. Satélites geoestacionários.
 - 2.4.7. Energia potencial gravitacional (em campos gravitacionais variáveis).
- 2.5. Dinâmica impulsiva.

- 2.5.1. Quantidade de movimento de um corpo e de um sistema de corpos.
- 2.5.2. Impulso exercido por uma força constante e por uma força variável.
- 2.5.3. Teorema do impulso. Relação entre impulso e quantidade de movimento.
- 2.5.4. Forças internas e externas a um sistema de corpos.
- 2.5.5. Sistemas isolados de forças externas e lei da conservação da quantidade de movimento.
- 2.5.6. Conservação da quantidade de movimento em explosões, colisões e disparos de projéteis.
- 2.5.7. Centro de massa de um sistema.
- 2.5.8. O teorema da aceleração do centro de massa.

2.6. Trabalho e energia.

- 2.6.1. Trabalho realizado por uma força constante.
- 2.6.2. Trabalho realizado por uma força variável em módulo. Interpretação do gráfico força *versus* deslocamento.
- 2.6.3. Energia cinética e o teorema da energia cinética.
- 2.6.4. Forças conservativas (força peso, força elástica e força elétrica) e não conservativas.
- 2.6.5. Trabalho realizado por forças conservativas.
- 2.6.6. Energia potencial gravitacional (quando a aceleração da gravidade for constante), elástica e elétrica.
- 2.6.7. Energia mecânica.
- 2.6.8. Sistemas conservativos e o teorema da conservação da energia mecânica.
- 2.6.9. Trabalho realizado por forças não conservativas. Trabalho realizado pela força de atrito.
- 2.6.10. Sistemas não conservativos.
- 2.6.11. Potência.

2.7. Fluidos.

- 2.7.1. Pressão exercida por uma força.
- 2.7.2. Pressão exercida por um líquido em equilíbrio. Pressão hidrostática.
- 2.7.3. Teorema de Stevin e aplicações.
- 2.7.4. A experiência de Torricelli.
- 2.7.5. O princípio de Pascal. Prensa hidráulica.
- 2.7.6. O teorema de Arquimedes.

3. Física térmica

3.1. Termometria.

- 3.1.1. Energia térmica, temperatura e termômetros.
- 3.1.2. As escalas Celsius, Fahrenheit e Kelvin. Relação matemática entre elas.

3.2. Dilatação térmica.

- 3.2.1. Dilatação térmica dos sólidos: linear, superficial e volumétrica.
- 3.2.2. Dilatação térmica dos líquidos.

3.3. Calorimetria.

- 3.3.1. Calor como forma de energia em trânsito e suas unidades de medida.
- 3.3.2. Calor sensível, calor específico sensível e capacidade térmica.
- 3.3.3. Mudanças de estado. O calor latente e o calor específico latente.
- 3.3.4. O diagrama de fases de uma substância.
- 3.3.5. Troca de calor em sistemas termicamente isolados. O equilíbrio térmico.
- 3.3.6. Potência térmica.

3.4. Propagação de calor.

- 3.4.1. Condução, convecção térmica e irradiação de calor.
- 3.4.2. O vaso de Dewar e a garrafa térmica.

3.5. Gás ideal.

- 3.5.1. O modelo de gás ideal.
- 3.5.2. A equação de estado (Equação de Clapeyron) para um gás ideal.
- 3.5.3. Lei geral dos gases perfeitos.
- 3.5.4. Transformações gasosas.

3.6. Termodinâmica.

- 3.6.1. Trabalho realizado pelas forças exercidas por um gás.
- 3.6.2. Energia interna.
- 3.6.3. A experiência de Joule e o equivalente mecânico do calor
- 3.6.4. Primeira Lei da Termodinâmica.
- 3.6.5. Transformações isotérmica, isobárica, isocórica, adiabática e cíclica.
- 3.6.6. Segunda Lei da Termodinâmica.
- 3.6.7. Máquinas térmicas e máquinas frigoríficas.
- 3.6.8. O ciclo de Carnot.

4. Óptica

- 4.1. Princípios da óptica geométrica.
 - 4.1.1. Princípio da propagação retilínea dos raios luminosos. Sombra e penumbra. Câmara escura de orifício.
 - O dia e a noite. Eclipses. As fases da Lua.
 - 4.1.2. Princípio da reversibilidade dos raios de luz.
 - 4.1.3. Princípio da independência dos raios de luz.
- 4.2. Reflexão da luz e formação de imagem.
 - 4.2.1. Leis da reflexão.
 - 4.2.2. Imagem de um ponto e de um corpo extenso.
 - 4.2.3. Espelhos planos. Construção e classificação da imagem. Campo visual. Translação e rotação de um espelho plano. Associação de espelhos planos.
 - 4.2.4. Espelhos esféricos. Condições de nitidez, elementos e raios notáveis de um espelho esférico.
 - 4.2.5. Construção geométrica e classificação de imagens em um espelho esférico.
 - 4.2.6. Estudo analítico de um espelho esférico. Equação dos pontos conjugados e do aumento linear transversal.
 - 4.2.7. Aplicações práticas de um espelho esférico.
- 4.3. Refração Luminosa.
 - 4.3.1. Fenômeno da refração. Índice de refração absoluto e relativo.
 - 4.3.2. Leis da refração. Lei de Snell-Descartes.
 - 4.3.3. Ângulo limite e reflexão total da luz.
 - 4.3.4. Dioptro plano.
 - 4.3.5. Lâmina de faces paralelas.
 - 4.3.6. Prismas.
 - 4.3.7. A dispersão luminosa e a refração na atmosfera.
- 4.4. Lentes esféricas delgadas.
 - 4.4.1. Focos e comportamento óptico de uma lente esférica.
 - 4.4.2. Raios notáveis de uma lente esférica.
 - 4.4.3. Construção geométrica e classificação de imagens em uma lente esférica.
 - 4.4.4. Estudo analítico das lentes esféricas. Equação dos pontos conjugados e do aumento linear transversal.
 - 4.4.5. Vergência de uma lente.
 - 4.4.6. Aplicações práticas das lentes esféricas.
 - 4.4.7. Instrumentos ópticos: câmera fotográfica, microscópio simples e composto, lunetas terrestre e astronômica, telescópios e projetores.
- 4.5. Olho humano.
 - 4.5.1. O olho emetrope.
 - 4.5.2. Ametropias: miopia, hipermetropia, presbiopia e astigmatismo.
 - 4.5.3. Correção de miopia, hipermetropia e presbiopia utilizando lentes esféricas. A dioptria.

5. Oscilações e ondas

- 5.1. Período de um pêndulo simples e de um sistema massa-mola. Associação de molas ideais.
- 5.2. Pulsos e ondas. Classificação das ondas.
- 5.3. Comprimento de onda, período e frequência de uma onda.
- 5.4. Propagação de um pulso em meios unidimensionais. Velocidade de propagação.
- 5.5. Fenômenos ondulatórios: reflexão, refração, interferência, polarização, difração e ressonância.

- 5.6. Ondas planas e esféricas.
- 5.7. Ondas estacionárias.
- 5.8. Caráter ondulatório da luz: cor e frequência.
- 5.9. Caráter ondulatório do som. Ondas sonoras. Velocidade de propagação do som.
- 5.10. Qualidades fisiológicas do som: altura, timbre e intensidade.
- 5.11. Reforço, reverberação e eco.
- 5.12. Nível sonoro. O decibel.
- 5.13. Cordas vibrantes e tubos sonoros.
- 5.14. Efeito Doppler.

6. Eletricidade

- 6.1. Eletrostática.
 - 6.1.1. Carga elétrica, sua conservação e quantização. Carga elétrica elementar.
 - 6.1.2. Processos de eletrização: atrito, contato e indução.
 - 6.1.3. Lei de Coulomb.
 - 6.1.4. Campo elétrico gerado por cargas puntiformes. Campo elétrico uniforme. Linhas de força.
 - 6.1.5. Potencial e diferença de potencial elétrico. Linhas e superfícies equipotenciais.
 - 6.1.6. Energia potencial elétrica.
 - 6.1.7. Trabalho realizado pela força elétrica.
 - 6.1.8. Condutores em equilíbrio eletrostático.
 - 6.1.9. Poder das pontas e blindagem eletrostática.
- 6.2. Eletrodinâmica.
 - 6.2.1. Materiais isolantes e condutores.
 - 6.2.2. Corrente elétrica e intensidade de corrente elétrica.
 - 6.2.3. Tensão elétrica.
 - 6.2.4. Resistência elétrica.
 - 6.2.5. Energia elétrica, potência elétrica e efeito joule. Consumo de energia elétrica. O quilowatt-hora.
 - 6.2.6. Resistores. Primeira Lei de Ohm. Segunda Lei de Ohm. Resistividade elétrica.
 - 6.2.7. Associação de resistores.
 - 6.2.8. Noções de instalação elétrica residencial.
 - 6.2.9. Geradores elétricos. Força eletromotriz e resistência interna. Equação e curva característica de um gerador.
 - 6.2.10. Receptores elétricos. Força contra eletromotriz e resistência interna. Equação e curva característica de um receptor.
 - 6.2.11. Leis de Kirchhoff.
 - 6.2.12. Circuitos elétricos.
 - 6.2.13. Medidores elétricos.
- 6.3. Eletromagnetismo.
 - 6.3.1. Polos magnéticos, ímãs, campo magnético e linhas de indução magnética.
 - 6.3.2. Campo magnético criado por corrente elétrica: condutor retilíneo longo, espira circular e solenoide.
 - 6.3.3. Campo magnético terrestre.
 - 6.3.4. Força magnética sobre uma carga puntiforme em movimento em um campo magnético uniforme. Trajetórias da carga nesse campo.
 - 6.3.5. Força magnética sobre condutores retilíneos percorridos por corrente, imersos em um campo magnético uniforme.
 - 6.3.6. Força magnética entre condutores retilíneos paralelos.
 - 6.3.7. Indução eletromagnética. Fluxo magnético. Diferença de potencial induzida e corrente elétrica induzida. A Lei de Lenz.
 - 6.3.8. Lei de Faraday-Neumann.
 - 6.3.9. Princípio de funcionamento de motores elétricos e de medidores de corrente, de diferença de potencial (tensão) e de resistência.
 - 6.3.10. Noção de onda eletromagnética.

MATEMÁTICA

1. Conjuntos numéricos

1.1. Números naturais e números inteiros: divisibilidade, máximo divisor comum e mínimo múltiplo comum, decomposição em fatores primos.

- 1.2. Números racionais e noção elementar de números reais: operações e propriedades, ordem, valor absoluto, desigualdades.
- 1.3. Múltiplos, divisores, razões, proporcionalidade e porcentagem.
- 1.4. Números complexos: representação e operações na forma algébrica, raízes da unidade.
- 1.5. Sequências: noção de sequência, progressões aritméticas e geométricas, representação decimal de um número real.

2. Polinômios

2.1. Polinômios: conceito, grau e propriedades fundamentais, operações, divisão de um polinômio por um binômio de forma x-a.

3. Equações algébricas

- 3.1. Equações algébricas: definição, conceito de raiz, multiplicidade de raízes, enunciado do Teorema Fundamental da Álgebra.
- 3.2. Relações entre coeficientes e raízes. Pesquisa de raízes múltiplas. Raízes: racionais reais.

4. Análise combinatória

- 4.1. Arranjos, permutações e combinações simples.
- 4.2. Binômio de Newton.

5. Probabilidade

- 5.1. Eventos, conjunto universo. Conceituação de probabilidade.
- 5.2. Eventos mutuamente exclusivos. Probabilidade da união e da intersecção de dois ou mais eventos.
- 5.3. Probabilidade condicional. Eventos independentes.

6. Matrizes, determinantes e sistemas lineares

- 6.1. Matrizes: operações, inverso de uma matriz.
- 6.2. Sistemas lineares. Matriz associada a um sistema. Resolução e discussão de um sistema linear.
- 6.3. Determinante de uma matriz quadrada: propriedades e aplicações, regras de Cramer.

7. Geometria analítica

- 7.1. Coordenadas cartesianas na reta e no plano. Distância entre dois pontos.
- 7.2. Equação da reta: formas reduzida, geral e segmentária; coeficiente angular. Intersecção de retas, retas paralelas e perpendiculares. Feixe de retas. Distância de um ponto a uma reta. Área de um triângulo.
- 7.3. Equação da circunferência: tangentes a uma circunferência; intersecção de uma reta a uma circunferência.
- 7.4. Elipse, hipérbole e parábola: equações reduzidas.

8. Funções

- 8.1. Gráficos de funções injetoras, sobrejetoras e bijetoras; função composta; função inversa.
- 8.2. Função polinomial do 1º grau; função constante.
- 8.3. Função quadrática.
- 8.4. Função exponencial e função logarítmica. Teoria dos logaritmos; uso de logaritmos em cálculos.
- 8.5. Equações e inequações: lineares, quadráticas, exponenciais e logarítmicas.

9. Trigonometria

- 9.1. Arcos e ângulos: medidas, relações entre arcos.
- 9.2. Funções trigonométricas: periodicidade, cálculo dos valores $\pi/6$, $\pi/4$, $\pi/3$, em gráficos.
- 9.3. Fórmulas de adição, subtração, duplicação e bissecção de arcos. Transformações de somas de funções trigonométricas em produtos.
- 9.4. Equações e inequações trigonométricas.
- 9.5. Resoluções de triângulos retângulos. Teorema dos senos. Teorema dos cossenos. Resolução de triângulos obliquângulos.

10. Geometria plana

10.1. Figuras geométricas simples: reta, semirreta, segmento, ângulo plano, polígonos planos, circunferência e círculo.

- 10.2. Congruência de figuras planas.
- 10.3. Semelhança de triângulos.
- 10.4. Relações métricas nos triângulos, polígonos regulares e círculos.
- 10.5. Áreas de polígonos, círculos, coroa e setor circular.

11. Geometria espacial

- 11.1. Retas e planos no espaço. Paralelismo e perpendicularismo.
- 11.2. Ângulos diedros e ângulos poliédricos. Poliedros: poliedros regulares.
- 11.3. Prisma, pirâmides e respectivos troncos. Cálculo de áreas e volumes.
- 11.4. Cilindro, cone e esfera: cálculo de área e volumes.

12. Tratamento da informação

- 12.1. Gráficos e tabelas.
- 12.2. Medidas de centralidade (moda, mediana e média) e de dispersão (desvio padrão e variância).

Versão 02 Aprovada por: M. M. C. B.

LÍNGUA PORTUGUESA

1. Língua falada e língua escrita

- 1.1. Distinção entre variedades do português (fatores situacionais, sociais, históricos e geográficos).
- 1.2. Norma ortográfica.

2. Morfossintaxe

- 2.1. Classes de palavras (substantivo, artigo, adjetivo, numeral, pronome, verbo, advérbio, conjunção, preposição e interjeição).
- 2.2. Processos de formação de palavras.
- 2.3. Flexão nominal.
- 2.4. Flexão verbal (expressão de tempo, modo, aspecto e voz; correlação de tempos e modos).
- 2.5. Concordância nominal e verbal.
- 2.6. Regência nominal e verbal.

3. Processos sintático-semânticos

- 3.1. Conectivos: função sintática e valores lógico-semânticos.
- 3.2. Coordenação e subordinação.
- 3.3. Reorganização de orações e períodos.
- 3.4. Figuras de linguagem.

4. Compreensão, interpretação e produção de texto

- 4.1. Níveis de significação do texto: significação explícita e significação implícita, denotação e conotação (sentido literal e sentido figurado).
- 4.2. Estratégias de articulação do texto: mecanismos de coesão (coesão lexical, referencial e articulação de enunciados de qualquer extensão) e coerência.
- 4.3. Organização do texto: dissertação, narração e descrição.
- 4.4. Citação de discursos: discurso direto, discurso indireto e discurso indireto livre.
- 4.5. Relação entre textos.
- 4.6. Relação do texto com seu contexto histórico e social.
- 4.7. Intertextualidade.

5. Literatura brasileira

- 5.1. "Literatura" de informação / "Literatura" dos jesuítas.
- 5.2. Barroco.
- 5.3. Arcadismo.
- 5.4. Romantismo.
- 5.5. Realismo / Naturalismo.
- 5.6. Parnasianismo.
- 5.7. Simbolismo.
- 5.8. Pré-Modernismo.
- 5.9. Modernismo.
- 5.10. Pós-Modernismo.

6. Literatura portuguesa

- 6.1. Trovadorismo.
- 6.2. Humanismo.
- 6.3. Classicismo.
- 6.4. Barroco.
- 6.5. Arcadismo.
- 6.6. Romantismo.
- 6.7. Realismo / Naturalismo.
- 6.8. Parnasianismo.
- 6.9. Simbolismo.
- 6.10. Modernismo.
- 6.11. Pós-Modernismo.

LÍNGUA INGLESA

- 1. Compreensão geral do sentido e do propósito do texto, bem como características do seu gênero textual.
- 2. Compreensão de ideias específicas expressas em frases e parágrafos e a relação entre frases e parágrafos distintos no texto.
- 3. Localização de informações específicas em um ou mais trechos do texto.
- 4. Identificação de marcadores textuais, tais como conjunções, advérbios, preposições etc. e sua função precípua no texto em análise.
- 5. Compreensão do significado de itens lexicais fundamentais para a correta interpretação do texto seja por meio de substituição (sinonímia), equivalência entre inglês e português, ou explicitação da carga semântica da palavra ou expressão.
- 6. Localização da referência textual específica de elementos, tais como pronomes, advérbios, entre outros, sempre em função de sua relevância para a compreensão das ideias expressas no texto.
- 7. Compreensão da função de elementos linguísticos específicos, tais como "modal verbs", por exemplo, na produção de sentido no contexto em que são utilizados.

Observação importante: não serão propostas questões que exijam o domínio de terminologia gramatical.

REDAÇÃO

Na prova de redação, espera-se que o candidato produza uma dissertação em prosa na norma-padrão da língua portuguesa, a partir da leitura de textos auxiliares, que servem como um referencial para ampliar os argumentos produzidos pelo próprio candidato. Ele deverá demonstrar domínio dos mecanismos de coesão e coerência textual, considerando a importância de apresentar um texto bem articulado.

A prova de redação será avaliada conforme os critérios a seguir:

- A) Tema: considera-se se o texto do candidato atende ao tema proposto. A fuga completa ao tema proposto é motivo suficiente para que a redação não seja corrigida em qualquer outro de seus aspectos, recebendo nota 0 (zero) total.
- B) Estrutura (gênero/tipo de texto e coerência): consideram-se aqui, conjuntamente, os aspectos referentes ao gênero/tipo de texto proposto e à coerência das ideias. A fuga completa ao gênero/tipo de texto é motivo suficiente para que a redação não seja corrigida em qualquer outro de seus aspectos, recebendo nota 0 (zero) total. Avalia-se aqui como o candidato sustenta sua tese em termos argumentativos e como essa argumentação está organizada, considerando-se a macroestrutura do texto dissertativo (introdução, desenvolvimento e conclusão). No gênero/tipo de texto, avalia-se também o tipo de interlocução construída: por se tratar de uma dissertação, deve-se prezar pela objetividade, sendo assim, o uso de primeira pessoa do singular e de segunda pessoa (singular e plural) poderá ser penalizado. Será considerada aspecto negativo a referência direta à situação imediata de produção textual (ex.: como afirma o autor do primeiro texto/da coletânea/do texto I; como solicitado nesta prova/proposta de redação). Na coerência, será observada, além da pertinência dos argumentos mobilizados para a defesa do ponto de vista, a capacidade do candidato de encadear as ideias de forma lógica e coerente (progressão textual). Serão consideradas aspectos negativos a presença de contradições entre as ideias, a falta de partes da macroestrutura dissertativa, a falta de desenvolvimento das ideias, a falta de autonomia do texto, ou a presença de conclusões não decorrentes do que foi previamente exposto.
- C) Expressão (coesão e modalidade): consideram-se nesse item os aspectos referentes à coesão textual e ao domínio da norma-padrão da língua portuguesa. Na coesão, avalia-se a utilização dos recursos coesivos da língua (anáforas, catáforas, substituições, conjunções etc.) de modo a tornar a relação entre frases e períodos e entre os parágrafos do texto mais clara e precisa. Serão considerados aspectos negativos as quebras entre frases ou parágrafos e o emprego inadequado de recursos coesivos. Na modalidade, serão examinados os aspectos gramaticais como ortografia, morfologia, sintaxe e pontuação, bem como a escolha lexical (precisão vocabular) e o grau de formalidade/informalidade expressa em palavras e expressões.

Será atribuída nota zero à redação que:

- a) fugir ao tema e/ou gênero propostos;
- b) apresentar nome, rubrica, assinatura, sinal, iniciais ou marcas que permitam a identificação do candidato;
- c) estiver em branco;
- d) apresentar textos sob forma não articulada verbalmente (apenas com desenhos, números e/ou palavras soltas);
- e) for escrita em outra língua que não a portuguesa;
- f) apresentar letra ilegível e/ou incompreensível;
- g) apresentar o texto definitivo fora do espaço reservado para tal;
- h) apresentar 7 (sete) linhas ou menos (sem contar o título);
- i) for composta integralmente por cópia de trechos da coletânea ou de quaisquer outras partes da prova.
- j) apresentar formas propositais de anulação, como impropérios, trechos jocosos ou a recusa explícita em cumprir o tema proposto.

Observações importantes

- Cada redação é avaliada por dois examinadores independentes e, quando há discrepância na atribuição das notas, o texto é reavaliado por um terceiro examinador independente. Quando a discrepância permanece, a prova é avaliada pelos coordenadores da banca.
- O espaço para rascunho no caderno de questões é de preenchimento facultativo. Em hipótese alguma, o rascunho elaborado pelo candidato será considerado na correção da prova de redação pela Banca Examinadora.
- Em hipótese alguma o título da redação será considerado na avaliação do texto. Ainda que o título contenha elementos relacionados à abordagem temática, a nota do critério que avalia o tema só será atribuída a partir do que estiver escrito no corpo do texto.
- Textos curtos, com apenas 15 (quinze) linhas ou menos, serão penalizados no critério que avalia a expressão.
- As propostas de redação da Fundação Vunesp apresentam uma coletânea de textos motivadores que servem como ponto de partida para a reflexão sobre o tema que deverá ser abordado. Textos compostos apenas por cópias desses textos motivadores receberão zero total e textos em que seja identificada a predominância de trechos de cópia em relação a trechos autorais terão a nota final diminuída drasticamente.